
 P.Bakowski 1

““Practical IoT for Business Schools”Practical IoT for Business Schools”
““There are There are two kinds of peopletwo kinds of people: those who understand technology and those who don’t.: those who understand technology and those who don’t.

People who understand technology can design and control the very structure of the world People who understand technology can design and control the very structure of the world
around them. People who don’t understand it are controlled by those who do”around them. People who don’t understand it are controlled by those who do”

Mattan Griffel (director at Columbia Business School)Mattan Griffel (director at Columbia Business School)

 P.Bakowski 2

““IoT – Hardware aspects”IoT – Hardware aspects”
““Software does not exist Software does not exist per seper se; it may be instantiated statically in the memory ; it may be instantiated statically in the memory

or dynamically during the execution on hardware processors”or dynamically during the execution on hardware processors”

““Real Men Have Fabs” Jerry Sanders, AMD founderReal Men Have Fabs” Jerry Sanders, AMD founder

 P.Bakowski 3

IoT – global pictureIoT – global picture

 IoT – Internet of ThingsIoT – Internet of Things

 ThingsThings

 InternetInternet

Things: Embedded Software/HardwareThings: Embedded Software/Hardware

 Internet: Communication meansInternet: Communication means

Terminology, terminology, terminology , ..Terminology, terminology, terminology , ..

 P.Bakowski 4

Internet InfrastructureInternet Infrastructure

InternetInternet
infrastructureinfrastructure

Router is internal device – IP packets: Packets Per Second, Packet Loss, ..Router is internal device – IP packets: Packets Per Second, Packet Loss, ..

Long distance links – fiber : Bits Per Second – 10Long distance links – fiber : Bits Per Second – 1066, 10, 1099, 10, 101212

routerrouter

routerrouter

routerrouter

routerrouter
routerrouter

routerrouter

 P.Bakowski 5

Internet – Access PointsInternet – Access Points

InternetInternet
infrastructureinfrastructure

APAP

APAP

AP – Access Point is a wireless entry (to Internet) for AP – Access Point is a wireless entry (to Internet) for device (WiFi)device (WiFi)

routerrouter
routerrouter

Mobile Network: 4G/5GMobile Network: 4G/5G BSBS

BS – Base Station is a wireless entry (to Internet) for device, APBS – Base Station is a wireless entry (to Internet) for device, AP

EthernetEthernet

Ethernet – is local wired access to Internet for device, AP, switch, ..Ethernet – is local wired access to Internet for device, AP, switch, ..

APAP

 P.Bakowski 6

IoT – Clients and ServersIoT – Clients and Servers

InternetInternet
infrastructureinfrastructure

APAP

IoT Server and IoT Client are external devicesIoT Server and IoT Client are external devices

routerrouter
routerrouter

 IoT IoT
clientclient

Mobile Network: 4G/5GMobile Network: 4G/5G

 IoT IoT
clientclient BSBS

 IoT IoT
serverserver

Client : PC, laptop, tablet, smartphone, IoT device, AIoT device, ..Client : PC, laptop, tablet, smartphone, IoT device, AIoT device, ..

Server : PC, SBC, HPC with data center, HPC with AI center, (Cloud: UP,DOWN)Server : PC, SBC, HPC with data center, HPC with AI center, (Cloud: UP,DOWN)

 P.Bakowski 7

IP Things and Non-IP ThingsIP Things and Non-IP Things

InternetInternet
infrastructureinfrastructure

thingthing

thingthing

thingthing
thingthing

 IoTIoT
gatewaygateway

thingthingAPAP

Thing is a Terminal deviceThing is a Terminal device

IoT gateway is an intermediate deviceIoT gateway is an intermediate device

routerrouter

Mobile Network: 4G/5GMobile Network: 4G/5G BSBS

APAP

routerrouter
 IoT IoT
serverserver

IP - ThingIP - Thing

NON IP - ThingNON IP - Thing

 IoTIoT
gatewaygateway

thingthing

thingthing

 IoTIoT
gatewaygateway

thingthing
thingthing

 P.Bakowski 8

Routes and Examples - DiscussionRoutes and Examples - Discussion

InternetInternet
infrastructureinfrastructure

thingthing

thingthing

thingthing
thingthing

 IoTIoT
gatewaygateway

thingthingAPAP

RoutesRoutes

Examples, examples, examples - DiscussionExamples, examples, examples - Discussion

routerrouter

Mobile Network: 4G/5GMobile Network: 4G/5G BSBS

APAP

routerrouter
 IoT IoT
serverserver

IP - ThingIP - Thing

NON IP - ThingNON IP - Thing

 IoTIoT
gatewaygateway

thingthing

thingthing

 IoTIoT
gatewaygateway

thingthing
thingthing

 P.Bakowski 9

Simple and Intelligent ThingsSimple and Intelligent Things

Simple Thing – basic processing of physical data and display and Simple Thing – basic processing of physical data and display and
activation of physical devicesactivation of physical devices

Front-End: Sensors-ActuatorsFront-End: Sensors-Actuators

Processing: MCU-RTCProcessing: MCU-RTC

Back-End: Communication ModemsBack-End: Communication Modems

SensorsSensors ActuatorsActuators

WiFiWiFi 4G/5G4G/5G LoRaLoRaBT/BLEBT/BLE

SystemSystem

 P.Bakowski 10

Simple and Intelligent ThingsSimple and Intelligent Things

Intelligent Thing – AI processing of physical data and display and Intelligent Thing – AI processing of physical data and display and
activation of physical devicesactivation of physical devices

Front-End: AI Sensors-ActuatorsFront-End: AI Sensors-Actuators

Processing: TPU-MCU-RTCProcessing: TPU-MCU-RTC

Back-End: Communication ModemsBack-End: Communication Modems

AI-SensorsAI-Sensors ActuatorsActuators

WiFiWiFi 4G/5G4G/5G LoRaLoRaBT/BLEBT/BLE

SystemSystem

 P.Bakowski 11

Real example – System on ChipReal example – System on Chip

ESP32 is a series of low-cost, low-power system on a chip - SoC micro-
controllers with integrated Wi-Fi and dual-mode Bluetooth. The ESP32
series employs either a Tensilica Xtensa LX6 microprocessor in both dual-
core and single-core variations, Xtensa LX7 dual-core microprocessor or a
single-core RISC-V microprocessor and includes built-in antenna switches, RF
balun, power amplifier, low-noise receive amplifier, filters, and power-
management modules.

ESP32 is created and developed by Espressif Systems, a Shanghai-based
Chinese company, and is manufactured by TSMC using their 40 nm process

 low-cost

low-power

Wi-Fi

BT-BLE

Xtensa LX6/LX7

RISC-V

 P.Bakowski 12

Real example – System on ChipReal example – System on Chip

 Low-cost < $5

Low-power <
1-100mA (5V)

Power (W) =
Current(A) *
Voltage(V)

Wi-Fi

BT-BLE

rich-interfaces

 P.Bakowski 13

Real example – System on ChipReal example – System on Chip

interfaces
to sensors
and
actuators

UART

I2C

SPI

 P.Bakowski 14

Real example – System on ChipReal example – System on Chip

radio interfaces

WiFi

BT/BLE

 P.Bakowski 15

Real example – System on ChipReal example – System on Chip

processors
Xtensa LX6
ULP

cryptographic
accelerators

ROM : read only

SRAM : read_write

 P.Bakowski 16

IoT – technology transfer aspectsIoT – technology transfer aspects

Cadence Design Systems, Inc., headquartered in San Jose, California, is an
American multinational computational software company, founded in 1988.
The company produces software, hardware and silicon structures for
designing integrated circuits and systems on chips (SoCs) .

SIP - LX6/7

FAB

CADENCE
Espressif

TSMC

Tensilica

 P.Bakowski 17

IoT – economic aspectsIoT – economic aspects

Tensilica is known for its customizable Xtensa (LX6/7) microprocessor core.

Tensilica was a company based in Silicon Valley in the semiconductor
intellectual property (SIP) core business. It is now a part of Cadence Design
Systems.
On March 11, 2013, Cadence Design Systems bought Tensilica for
approximately $380 million in cash.

Espressif bought eXtensa LX6/7 license (SIP) to design ESP32 SoCs. It went
public on Shanghai Stock Exchange in 2019 with 2 billion US dollars.

Remark: European and US investors were not allowed
to buy the shares !

SIP - Silicon Intellectual Propriety

 P.Bakowski 18

What is SIPWhat is SIP

In electronic design, a semiconductor intellectual property core (SIP core),
IP core, or IP block is a reusable unit of logic, cell, or integrated circuit layout
design that is the intellectual property of one party.

IP cores can be licensed to another party or owned and used by a single party.
The term comes from the licensing of the patent or source code copyright that
exists in the design.

There are:
→ Soft cores
→ Hard cores

Remark:
Thing about SIP cores as of “genetic code” for the production of digital circuits
and systems – SoC.

 P.Bakowski 19

IoT – SIP: hard and soft coresIoT – SIP: hard and soft cores

Soft cores
IP cores are commonly offered as synthesizable RTL in a hardware description
language such as Verilog or VHDL. These are analogous to low-level languages
such as C in the field of computer programming. IP cores delivered to chip
designers as RTL permit chip designers to modify designs at the functional level,
though many IP vendors offer no warranty or support for modified design

Hard cores
Hard cores (or hard macros) are analog or digital IP cores whose function cannot
be significantly modified by chip designers. These are generally defined as a
lower-level physical description that is specific to a particular process
technology.
Hard cores delivered for one foundry's process cannot be easily ported to a
different process or foundry.

 P.Bakowski 20

SIP and licensesSIP and licenses

Licensed functionality

Many of the best known IP cores are soft microprocessor designs.

Their instruction sets vary from small 8-bit processors, to 32-bit and 64-bit
processors such as the ESP32 LX6/7, ARM architectures or RISC-V
architectures.

Such processors form the "brains" of many embedded and IoT systems.

x86 leaders Intel and AMD heavily protect their processor designs' intellectual
property and don't use this business model for their x86-64 lines of
microprocessors.

 P.Bakowski 21

ARM business modelARM business model

ARM’s revenue comes entirely from IP licensing. It’s up to ARM’s
licensees/partners/customers to actually build and sell the chip. ARM’s revenue
structure is understandably very different than what we’re used to.
There are two amounts that all ARM licensees have to pay:

→ an upfront license fee, and
→ a royalty.

The licensing fees vary between an estimated $1 million to 10 million.
The royalty is usually 1 to 2% of the selling price of the chip. Licensing
enables ARM to scale the business efficiently.

 P.Bakowski 22

ARM vs RISC-V business modelARM vs RISC-V business model

ARM’s revenue comes entirely from IP licensing including ISA.

RISC-V is a standard and open architecture with no fees for ISA (Instruction
Set Architecture)

ARM

 P.Bakowski 23

Moore’s Law – digital driverMoore’s Law – digital driver

Moore's law is the
observation that the
number of transistors
in a dense integrated
circuit (IC) doubles
about every two years.
It is linked to gains
from experience in
production.

2022 – 55 billions
– Apple – M2 –
TSMC with 4nm
process

 P.Bakowski 24

High-end foundries - evolutionHigh-end foundries - evolution
The winner takes it all !

revenue

TSMC

Europe/USA/Asia USA/Asia Asia

 P.Bakowski 25

And finally pure-foundriesAnd finally pure-foundries
Key contract manufacturers include (2021 - total foundry revenue ~100 billion):

→ Taiwan Semiconductor Manufacturing Company (TSMC) Limited,
→ Global Foundries,
→ United Microelectronics Corporation (UMC),
→ Semiconductor Manufacturing International Corporation (SMIC),
→ Samsung Group,
→ Dongbu HiTek, and
→ STMicroelectronics.

 P.Bakowski 26

TSMC: The World’s Most Important Company TSMC: The World’s Most Important Company

TSMC is arguably the world’s most important company.
(2021) Apple, which accounts for one-fifth of TSMC’s revenue, told investors that
sales of Macs and iPads would fall by some $3 billion because of supply
constraints.

Few numbers:

→ A new foundry (4 in construction by TSMC) costs about $15 billion (more than
a nuclear plant); TSMC - $44 billion CAPEX for 2022 for 3nm and 2nm nodes.
→ One (EUV) chip machine (ASML) costs up to $250 million. All these machines
(production 60/year) are already sold up to 2024 to TSMC and Samsung.
→ 1 operational second of such a foundry costs $200/second – 100 jet fighters
in operational flight.

 P.Bakowski 27

SummarySummary

→ IoT hardware is essential for the development of modern digital
infrastructure

→ IoT hardware as well as the hardware of all modern digital
 systems is based on SoC

→ IoT SoC are designed by fabless companies using SIP

→ The high-end production is done in the silicon foundries
such as TSMC

Remark: In Europe there is no high-end silicon foundries

 P.Bakowski 28

““IoT – Software aspects”IoT – Software aspects”
““There are two kinds of people: those who understand technology and those who don’t.There are two kinds of people: those who understand technology and those who don’t.

People who understand technology can design and control the very structure of the People who understand technology can design and control the very structure of the
world around them. People who don’t understand it are controlled by those who do”world around them. People who don’t understand it are controlled by those who do”

Mattan Griffel (director at Columbia Business School)Mattan Griffel (director at Columbia Business School)

 P.Bakowski 29

IoT – software aspectsIoT – software aspects

ESP32 SoCs are powerful micro-controllers.

Basically they operate under the control of FreeRTOS.

The programming may be carried out with:

→ C/C++ or

→ MicroPython

C/C++ are source languages that must be compiled into binary code before
the execution on the processor.

MicroPython (Python) is source language that is interpretable.After loading to
the SoC memory the (Python-byte-code) may be directly (executed) interpreted.
This solution requires an interpreter to be loaded and ready in the SoC flash
memory.

 P.Bakowski 30

IoT - Programming IDEIoT - Programming IDE

ESP32 SoCs programming is carried out via an IDE – Integrated Development
Environment.

For C/C++ the IDE tools perform:
→ Editing of the source code
→ Compilation the source code to binary code
→ Loading (to flash memory)

For MicroPython the IDE tools perform:
→ Editing of the source code
→ Loading (to flash memory)

→ C/C++: complete and efficient, 3 phases development cycle

→ MicroPython/Python – less efficient but easier to write and with 2
phases development cycle (processor independent)

 P.Bakowski 31

Thonny IDE – starting with PythonThonny IDE – starting with Python

 P.Bakowski 32

Python – interpreterPython – interpreter
Choose the Python interpreter – the same as Thonny

 P.Bakowski 33

Python – first codePython – first code

3 windows:

→ Files

→ Editor

→ Shell - terminal

 P.Bakowski 34

Python – numbersPython – numbers

Python provides for different
types of numbers.

We have integers, floats, ..

We have arithmetical operators:
+, -, *, / , // , %, **

 P.Bakowski 35

Python – Strings 1Python – Strings 1

Python Strings

 P.Bakowski 36

Strings 2Strings 2

Test the code and change
some values:

[1:] to [3:], [5:-5] to [3:-3], etc

#s = s.__add__(" PyThOn")
s = s + " PyThon"

 P.Bakowski 37

ListsLists

Python Lists can be used to process data in groups. A list can contain a
collection of any type of data, including other lists.

 P.Bakowski 38

TuplesTuples
Python tuple are like lists , but are immutable, they can not be changed
once they are defined.

 P.Bakowski 39

SetsSets
Sets do not have any order of elements. They are defined by data
enclosed in curly braces {..} .

 P.Bakowski 40

DictionariesDictionaries
Dictionaries are a special set of keys with a value associated with each key.

 P.Bakowski 41

Code flow – Code flow – whilewhile loop loop

Programming is all
about data and
decisions.

Let us check out how
decisions can be made
 with while loop.

 P.Bakowski 42

Primes (Primes (for .. in range()for .. in range()))

 P.Bakowski 43

Functions, modeles and packagesFunctions, modeles and packages
Simple function definition and call:

 P.Bakowski 44

Complex functionComplex function

 P.Bakowski 45

Modules - Modules - mathmath

 P.Bakowski 46

classclass definition definition

The simplest form of class definition looks like this:

class ClassName:
 <statement-1>
 .
 <statement-N>

Class definitions, like function definitions (def statements) must be
executed before they have any effect.

Class objects support two kinds of operations:
→ attribute references and
→ instantiation.

https://docs.python.org/3/reference/compound_stmts.html#def

 P.Bakowski 47

classclass definition and references definition and references
Attribute references use the standard syntax used for all attribute references in
Python: obj.name.

Valid attribute names are all the names that were in the class’s namespace
when the class object was created.

class MyClass:
 """A simple example class"""
 i = 12345

 def f(self):
 return 'hello world'

then MyClass.i and MyClass.f are valid attribute references, returning an
integer and a function object, respectively.
Class attributes can also be assigned to, so you can change the value of
MyClass.i by assignment. __doc__ is also a valid attribute, returning the
docstring belonging to the class: "A simple example class".

 P.Bakowski 48

classclass instantiation , instantiation , __init____init__ method method
Class instantiation uses function notation. Just pretend that the class object is a
parameterless function that returns a new instance of the class.

For example (assuming the above class):

x = MyClass()

creates a new instance of the class and assigns this object to the local
variable x.

The instantiation operation (“calling” a class object) creates an empty object.
Many classes like to create objects with instances customized to a specific initial
state.

Therefore a class may define a special method named __init__(), like this:

def __init__(self):

self.data = []

When a class defines an __init__() method, class instantiation automatically
invokes __init__() for the newly-created class instance.

 P.Bakowski 49

classclass instantiation , instantiation , __init____init__ method method
The __init__() method may have arguments for greater flexibility. In that case,
arguments given to the class instantiation operator are passed on to
__init__().

For example,

 P.Bakowski 50

Instance objectsInstance objects
Now what can we do with instance objects? The only operations understood by
instance objects are attribute references. There are two kinds of valid attribute
names: data attributes and methods.

Data attributes need not be declared; like local variables, they spring into
existence when they are first assigned to.

For example, if x is the instance of MyClass created above, the following piece of
code will print the value 16, without leaving a trace:

x.counter = 1

while x.counter < 10:

 x.counter = x.counter * 2

print(x.counter)

del x.counter

 P.Bakowski 51

Instance objectsInstance objects

Data attributes need not
be declared; like local
variables, they spring into
existence when they are
first assigned to.

For example, if x is the
instance of MyClass
created above, the following
piece of code will print the
value 16, without leaving a
trace.

 P.Bakowski 52

Method objectsMethod objects
A method is called right after it is bound:

x.f()

In the MyClass example, this will return the
string 'hello world'.

 x.f is a method object, and can be
stored away and called at a later time.

For example:

xf = x.f

while True:

 print(xf())

time.sleep(2)

will continue to print hello world until the
end of time.

The call x.f() is exactly equivalent to
MyClass.f(x)

 P.Bakowski 53

Class and instance variablesClass and instance variables
Instance variables are for data
unique to each instance and

Class variables are for attributes
and methods shared by all
instances of the class.

 P.Bakowski 54

Class and instance variablesClass and instance variables
Instance variables are for
data unique to each
instance and

Class variables are for
attributes and methods
shared by all instances
of the class.

 P.Bakowski 55

SummarySummary
Python has been one of the world's most popular programming languages for
a long time, and for good reason.

Due to its relatively straightforward syntax, it's one of the easiest languages
to learn, and it's so remarkably scalable and general-purpose that it's used in
a huge array of fields, from web development to machine learning.

It remains one of the best programming languages for entrepreneurs to
learn because of this general-use nature.

MicroPython is a simplified version of Python (3) with some additional
features to program embedded systems and IoT devices.

It is our choice to develop practical IoT architectures based on our IoT
DevKits

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55

