
Mini- Projet IoT : EDGE

0. Sipeed Maixduino
Key Features：
◼ CPU: RISC-V Dual Core 64bit, with FPU，400Mhz-500Mhz, Neural
network processor
◼ Connector: Compatible with Arduino 24P LCD connector, 24P Camera
connector, TF card slot, Speaker connector, Compatible with Arduino
interface
◼ Development environment : PlatformIO, Arduino IDE
◼ USB or DC connector(6-12V input;5V 1.2A output)
◼ Download circuit: USB Type-C cable to complete the download
◼ Wireless Function(Optional): Support 2.4G 802.11.b/g/n, Bluetooth 4.2
◼ MEMS microphone and 3W speaker output

1. Set up PlatformIO with Visual Studio Code
In Visual Studio Code, search for and install Platform IO IDE under the Extension tab.

Click the PlatformIO Home button on the bottom left of the window. Then choose Platforms tab, and click
Install Embeded Platform.

Search for "k210" and install the Kendryte K210 platform:

2. Run the voice recognition sample and make your own
recordings
Navigate to PIO Home and open the Maix-SpeechRecognizer project. Look at the project structure on the
left:

The source files are in src/ folder. Configure the project first by opening platformio.ini. Modify the
configurations so that it looks like this:

If you are working with Linux (/dev/ttyUSB0 or /dev/ttyUSB1)
For board, we use the ID for the Maix Bit-Mic board. For upload_speed, we use 500000 (500 kbps). For
monitor_port and upload_port, we use the same port that is selected in Arduino. You can find and copy the port
name under PIO Home>Devices.

Now that Platform IO is configured, compile (V) and upload (→) the program to the Maix board. Click the
Upload button on the bottom:

You should see output like this:

https://courses.cs.washington.edu/courses/cse475/19au/code/Maix-SpeechRecognizer.zip

3. Analyze and Modify the sample to recognize your own commands
0. Look at voice_model.h. These are sample MFCC frames for each command. Each sample is

represented by its frame count (e.g. fram_num_hey_friday_0) and an array of its MFCC features (e.g.
hey_friday_0). Notice there are 2628 elements in each array--the same length as each recording
output from the serial port in 2.

1. Make your own recordings of two other commands (different from the two provided by the sample) from
the serial port. Replace the sample fram_num and MFCC features in voice_model.h with yours.

2. In main.cpp, look for the strings that are displayed after each recognition. Modify them as necessary to
reflect your commands in step 2.

3. Change RECORD_MODE back to 0, then re-run the program. Test your changes. Demonstrate your
changes to a TA.

The beginning of the voice_model.h file :

#ifndef __VOICE_MODEL_H
#define __VOICE_MODEL_H

#include <stdint.h>
#include "util/MFCC.h"

#ifdef __cplusplus
extern "C" {
#endif

const uint16_t fram_num_hey_friday_0 = 47;

const int16_t hey_friday_0[vv_frm_max*mfcc_num] = {
-96, 24, 12, 24, 18, 24, 21, 24, 23, 24, 20, 21, -562,
..

4. Import Arduino project to PlatformIO
PlatformIO seems less accessible than the Arduino IDE when you start, but it is an infinitely more powerful code
editor. We will see how to migrate (import) an existing project (ESP32,MaixDuino, ..)

4.1 Manually import an Arduino project on PlatformIO
Open the PIO home page from the toolbar on the left of the screen or from the house icon from the toolbar at the
bottom of the screen.

Click Import Arduino Projects to start importing an existing project.

Select the desired development board , for example sipeed MaixDuino

Launch the import / migration of the project to PIO

The folder created in the Projects directory takes as name the target date-time (name of the development
board) and contains the following elements:

• lib private libraries are moved to the lib folder
• src will contain all the ino files (source code of the Arduino project)
• platformio.ini is the configuration file that allows you to define the environments. Each

environment allows you to specify the type of development board (Arduino, ESP32, …), the framework
to use for compilation and many other parameters documented here.

; PlatformIO Project Configuration File
;
; Build options: build flags, source filter
; Upload options: custom upload port, speed and extra flags
; Library options: dependencies, extra library storages
; Advanced options: extra scripting
;

; Please visit documentation for the other options and examples

; https://docs.platformio.org/page/projectconf.html

[env:sipeed-maixduino]

platform = kendryte210

board = sipeed-maixduino

framework = arduino

lib_extra_dirs = ~/Documents/Arduino/libraries

monitor_port = /dev/ttyUSB0

upload_port = /dev/ttyUSB0

https://docs.platformio.org/en/latest/projectconf/
https://amzn.to/3knnQmP
https://amzn.to/3mA18Kr

4.2 New structure of the Arduino project under PIO
With the Arduino IDE, libraries are stored in Documents in an Arduino -> Library subfolder.
Under PIO, it is advisable to manage the libraries directly in the project folder. This allows you to manage the
versions of the libraries for each project. It’s also possible to do this with the Arduino IDE, but it’s less
convenient.

When migrating an existing project, the main.ino file is automatically moved to the src folder.

When creating a new project, PIO generates a cpp file and adds a call to the Arduino.h library

#include <Arduino.h>

You will have to manually move the data folder (if it exists) to the same level as the src folder

4.3 Simple example – maix.Blink.ino

// the setup function runs once when you press reset or power the board

#define LED_BUILTIN 12

void setup() {
 // initialize digital pin LED_BUILTIN as an output.
 pinMode(LED_BUILTIN, OUTPUT);
}

// the loop function runs over and over again forever
void loop() {
 digitalWrite(LED_BUILTIN, HIGH);
// turn the LED on (HIGH is the voltage level)
 delay(1000); // wait for a second
 digitalWrite(LED_BUILTIN, LOW);
// turn the LED off by making the voltage LOW
 delay(1000); // wait for a second
}

	0. Sipeed Maixduino
	1. Set up PlatformIO with Visual Studio Code
	2. Run the voice recognition sample and make your own recordings
	3. Analyze and Modify the sample to recognize your own commands
	4. Import Arduino project to PlatformIO
	4.1 Manually import an Arduino project on PlatformIO
	4.2 New structure of the Arduino project under PIO
	4.3 Simple example – maix.Blink.ino

